Expected value
From The Art and Popular Culture Encyclopedia
Related e |
Google
Featured: |
In probability theory, the expected value of a random variable, intuitively, is the long-run average value of repetitions of the same experiment it represents. For example, the expected value in rolling a six-sided die is 3.5, because the average of all the numbers that come up is 3.5 as the number of rolls approaches infinity (see Template:Section link for details). In other words, the law of large numbers states that the arithmetic mean of the values almost surely converges to the expected value as the number of repetitions approaches infinity. The expected value is also known as the expectation, mathematical expectation, EV, average, mean value, mean, or first moment.
More practically, the expected value of a discrete random variable is the probability-weighted average of all possible values. In other words, each possible value the random variable can assume is multiplied by its probability of occurring, and the resulting products are summed to produce the expected value. The same principle applies to an absolutely continuous random variable, except that an integral of the variable with respect to its probability density replaces the sum. The formal definition subsumes both of these and also works for distributions which are neither discrete nor absolutely continuous; the expected value of a random variable is the integral of the random variable with respect to its probability measure.
See also
- Center of mass
- Central tendency
- Chebyshev's inequality (an inequality on location and scale parameters)
- Conditional expectation
- Expected value is also a key concept in economics, finance, and many other subjects
- The general term expectation
- Expectation value (quantum mechanics)
- Law of total expectation –the expected value of the conditional expected value of X given Y is the same as the expected value of X.
- Moment (mathematics)
- Nonlinear expectation (a generalization of the expected value)
- Wald's equation for calculating the expected value of a random number of random variables