Almost surely
From The Art and Popular Culture Encyclopedia
Related e |
Google
Featured: |
In probability theory, one says that an event happens almost surely (sometimes abbreviated as a.s.) if it happens with probability one. The concept is analogous to the concept of "almost everywhere" in measure theory. While there is no difference between almost surely and surely (that is, entirely certain to happen) in many basic probability experiments, the distinction is important in more complex cases relating to some sort of infinity. For instance, the term is often encountered in questions that involve infinite time, regularity properties or infinite-dimensional spaces such as function spaces. Basic examples of use include the law of large numbers (strong form) or continuity of Brownian paths.
Almost never describes the opposite of almost surely; an event which happens with probability zero happens almost never.
See also
- Convergence of random variables, for "almost sure convergence"
- Degenerate distribution, for "almost surely constant"
- Almost everywhere, the corresponding concept in measure theory
- Infinite monkey theorem, a theorem using the aforementioned terms.