Camera obscura  

From The Art and Popular Culture Encyclopedia

Jump to: navigation, search
View from the Window at Le Gras is one of Nicéphore Niépce's earliest surviving photographs, circa 1826. Due to the 8 hour exposure, sunlight illuminates the buildings on both sides.
Enlarge
View from the Window at Le Gras is one of Nicéphore Niépce's earliest surviving photographs, circa 1826. Due to the 8 hour exposure, sunlight illuminates the buildings on both sides.

Related e

Wikipedia
Wiktionary
Shop


Featured:

The camera obscura (Latin for 'dark room'; literally 'darkened chamber') is an optical device that projects an image of its surroundings on a screen. It is used in drawing and for entertainment, and was one of the inventions that led to photography. The device consists of a box or room with a hole in one side. Light from an external scene passes through the hole and strikes a surface inside where it is reproduced, upside-down, but with color and perspective preserved. The image can be projected onto paper, and can then be traced to produce a highly accurate representation.

Using mirrors, as in the 18th century overhead version, it is possible to project a right-side-up image. Another more portable type is a box with an angled mirror projecting onto tracing paper placed on the glass top, the image being upright as viewed from the back.

As a pinhole is made smaller, the image gets sharper, but the projected image becomes dimmer. With too small a pinhole the sharpness again becomes worse due to diffraction. Some practical camera obscuras use a lens rather than a pinhole because it allows a larger aperture, giving a usable brightness while maintaining focus. (See pinhole camera for construction information.)

History

The earliest extant written record of the camera obscura is to be found in the writings of Mozi (470 to 390 BCE), a Chinese philosopher and the founder of Mohism. Mozi correctly asserted that the image in a camera obscura is flipped upside down because light travels in straight lines from its source. His disciples developed this into a minor theory of optics.

The Greek philosopher Aristotle (384 to 322 BCE) was familiar with the principle of the camera obscura. He viewed the crescent shape of a partially eclipsed sun projected on the ground through the holes in a sieve and through the gaps between the leaves of a plane tree. In the 4th century BCE, Aristotle noted that "sunlight travelling through small openings between the leaves of a tree, the holes of a sieve, the openings wickerwork, and even interlaced fingers will create circular patches of light on the ground." Euclid's Optics (ca 300 BCE) mentioned the camera obscura as a demonstration that light travels in straight lines. In the 4th century, Greek scholar Theon of Alexandria observed that "candlelight passing through a pinhole will create an illuminated spot on a screen that is directly in line with the aperture and the center of the candle."

In the 6th century, the Byzantine-Greek mathematician and architect Anthemius of Tralles (most famous for designing the Hagia Sophia), used a type of camera obscura in his experiments.

In the 9th century, Al-Kindi (Alkindus) demonstrated that "light from the right side of the flame will pass through the aperture and end up on the left side of the screen, while light from the left side of the flame will pass through the aperture and end up on the right side of the screen."

Then Ibn al-Haytham (965–1039 A.D.), also known as Alhazen, described a 'dark chamber' and experimented with images seen through the pinhole. He arranged three candles in a row and put a screen with a small hole between the candles and the wall. He noted that images were formed only by means of small holes and that the candle to the right made an image to the left on the wall.

Leonardo da Vinci (1452–1519), familiar with the work of Alhazen in Latin translation and after an extensive study of optics and human vision, published the first clear description of the camera obscura in Codex Atlanticus (1502):

"If the facade of a building, or a place, or a landscape is illuminated by the sun and a small hole is drilled in the wall of a room in a building facing this, which is not directly lighted by the sun, then all objects illuminated by the sun will send their images through this aperture and will appear, upside down, on the wall facing the hole.

You will catch these pictures on a piece of white paper, which placed vertically in the room not far from that opening, and you will see all the above-mentioned objects on this paper in their natural shapes or colors, but they will appear smaller and upside down, on account of crossing of the rays at that aperture. If these pictures originate from a place which is illuminated by the sun, they will appear colored on the paper exactly as they are. The paper should be very thin and must be viewed from the back."

The Song Dynasty Chinese scientist Shen Kuo (1031–1095) experimented with a camera obscura, and was the first to apply geometrical and quantitative attributes to it in his book of 1088 AD, the Dream Pool Essays. However, Shen Kuo alluded to the fact that the Miscellaneous Morsels from Youyang written in about 840 AD by Duan Chengshi (d. 863) during the Tang Dynasty (618–907) mentioned inverting the image of a Chinese pagoda tower beside a seashore. In fact, Shen makes no assertion that he was the first to experiment with such a device. Shen wrote of Cheng's book: "[Miscellaneous Morsels from Youyang] said that the image of the pagoda is inverted because it is beside the sea, and that the sea has that effect. This is nonsense. It is a normal principle that the image is inverted after passing through the small hole."

In 13th-century England, Roger Bacon described the use of a camera obscura for the safe observation of solar eclipses. At the end of the 13th century, Arnaldus de Villa Nova is credited with using a camera obscura to project live performances for entertainment. Its potential as a drawing aid may have been familiar to artists by as early as the 15th century; Leonardo da Vinci (1452–1519 AD) described the camera obscura in Codex Atlanticus. Johann Zahn's Oculus Artificialis Teledioptricus Sive Telescopium, published in 1685, contains many descriptions, diagrams, illustrations and sketches of both the camera obscura and the magic lantern.

Giambattista della Porta improved the camera obscura by replacing the hole with an old man's lenticular (biconvex) lens in his Magia Naturalis (1558-1589), the popularity of which helped spread knowledge of it. He compared the shape of the human eye to the lens in his camera obscura, and provided a readily comprehensible example of how light forms images in the eye. One chapter in the Conte Algarotti's Saggio sopra Pittura (1764) is dedicated to the use of a camera ottica ("optic chamber") in painting.

The 17th century Dutch Masters, such as Johannes Vermeer, were known for their magnificent attention to detail. It has been widely speculated that they made use of such a camera, but the extent of their use by artists at this period remains a matter of considerable controversy, recently revived by the Hockney–Falco thesis.

The term "camera obscura" itself was first used by the German astronomer Johannes Kepler in 1604. The term is based on the Latin camera, "(vaulted) chamber or room", and obscura, "darkened" (plural: camerae obscurae). The English physician and author Sir Thomas Browne speculated upon the interrelated workings of optics and the camera obscura in his 1658 discourse The Garden of Cyrus thus:

For at the eye the Pyramidal rayes from the object, receive a decussation, and so strike a second base upon the Retina or hinder coat, the proper organ of Vision; wherein the pictures from objects are represented, answerable to the paper, or wall in the dark chamber; after the decussation of the rayes at the hole of the hornycoat, and their refraction upon the Christalline humour, answering the foramen of the window, and the convex or burning-glasses, which refract the rayes that enter it.

Early models were large; comprising either a whole darkened room or a tent (as employed by Johannes Kepler). By the 18th century, following developments by Robert Boyle and Robert Hooke, more easily portable models became available. These were extensively used by amateur artists while on their travels, but they were also employed by professionals, including Paul Sandby, Canaletto and Joshua Reynolds, whose camera (disguised as a book) is now in the Science Museum (London). Such cameras were later adapted by Joseph Nicephore Niepce, Louis Daguerre and William Fox Talbot for creating the first photographs.


See also




Unless indicated otherwise, the text in this article is either based on Wikipedia article "Camera obscura" or another language Wikipedia page thereof used under the terms of the GNU Free Documentation License; or on research by Jahsonic and friends. See Art and Popular Culture's copyright notice.

Personal tools