From The Art and Popular Culture Encyclopedia

(Redirected from Polyhedra)
Jump to: navigation, search

Related e



Kunstformen der Natur (1904) by Ernst Haeckel
Kunstformen der Natur (1904) by Ernst Haeckel
Rhombicuboctahedron by Leonardo da Vinci

A polyhedron (plural polyhedra or polyhedrons) is a geometric solid in three dimensions with flat faces and straight edges. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- (stem of πολύς, "many") + -edron (form of έδρα, "base", "seat", or "face").

Defining a polyhedron as a solid bounded by flat faces and straight edges is not very precise and, to a modern mathematician, quite unsatisfactory. Grünbaum (1994, p. 43) observed, "The Original Sin in the theory of polyhedra goes back to Euclid, and through Kepler, Poinsot, Cauchy and many others ... [in that] at each stage ... the writers failed to define what are the 'polyhedra' ...." Since then rigorous definitions of "polyhedron" have been given within particular contexts. However such definitions are seldom compatible in other contexts.




Stones carved in shapes showing the symmetries of various polyhedra have been found in Scotland and may be as much as 4,000 years old. These stones show not only the form of various symmetrical polyehdra, but also the relations of duality amongst some of them (that is, that the centres of the faces of the cube gives the vertices of an octahedron, and so on). Examples of these stones are on display in the John Evans room of the Ashmolean Museum at Oxford University. It is impossible to know why these objects were made, or how the sculptor gained the inspiration for them.

Other polyhedra have of course made their mark in architecture—cubes and cuboids being obvious examples, with the earliest four-sided pyramids of ancient Egypt also dating from the Stone Age.

The Etruscans preceded the Greeks in their awareness of at least some of the regular polyhedra, as evidenced by the discovery near Padua (in Northern Italy) in the late 19th century of a dodecahedron made of soapstone, and dating back more than 2,500 years (Lindemann, 1987). Pyritohedric crystals are found in northern Italy.


The earliest known written records of these shapes come from Classical Greek authors, who also gave the first known mathematical description of them. The earlier Greeks were interested primarily in the convex regular polyhedra, which came to be known as the Platonic solids. Pythagoras knew at least three of them, and Theaetetus (circa 417 B. C.) described all five. Eventually, Euclid described their construction in his Elements. Later, Archimedes expanded his study to the convex uniform polyhedra which now bear his name. His original work is lost and his solids come down to us through Pappus.


By 236 AD, in China Liu Hui was describing the dissection of the cube into its characteristic tetrahedron (orthoscheme) and related solids, using assemblages of these solids as the basis for calculating volumes of earth to be moved during engineering excavations.


After the end of the Classical era, scholars in the Islamic civilisation continued to take the Greek knowledge forward (see Mathematics in medieval Islam).

The 9th century scholar Thabit ibn Qurra gave formulae for calculating the volumes of polyhedra such as truncated pyramids.

Then in the 10th century Abu'l Wafa described the convex regular and quasiregular spherical polyhedra.


As with other areas of Greek thought maintained and enhanced by Islamic scholars, Western interest in polyhedra revived during the Italian Renaissance. Artists constructed skeletal polyhedra, depicting them from life as a part of their investigations into perspective. Several appear in marquetry panels of the period. Piero della Francesca gave the first written description of direct geometrical construction of such perspective views of polyhedra. Leonardo da Vinci made skeletal models of several polyhedra and drew illustrations of them for a book by Pacioli. A painting by an anonymous artist of Pacioli and a pupil (Portrait of Luca Pacioli) depicts a glass rhombicuboctahedron half-filled with water.

As the Renaissance spread beyond Italy, later artists such as Wenzel Jamnitzer, Dürer and others also depicted polyhedra of various kinds, many of them novel, in imaginative etchings.

Star polyhedra

For almost 2,000 years, the concept of a polyhedron as a convex solid had remained as developed by the ancient Greek mathematicians.

During the Renaissance star forms were discovered. A marble tarsia in the floor of St. Mark's Basilica, Venice, depicts a stellated dodecahedron. Artists such as Wenzel Jamnitzer delighted in depicting novel star-like forms of increasing complexity.

Johannes Kepler realised that star polygons, typically pentagrams, could be used to build star polyhedra. Some of these star polyhedra may have been discovered before Kepler's time, but he was the first to recognise that they could be considered "regular" if one removed the restriction that regular polytopes be convex. Later, Louis Poinsot realised that star vertex figures (circuits around each corner) can also be used, and discovered the remaining two regular star polyhedra. Cauchy proved Poinsot's list complete, and Cayley gave them their accepted English names: (Kepler's) the small stellated dodecahedron and great stellated dodecahedron, and (Poinsot's) the great icosahedron and great dodecahedron. Collectively they are called the Kepler-Poinsot polyhedra.

The Kepler-Poinsot polyhedra may be constructed from the Platonic solids by a process called stellation. Most stellations are not regular. The study of stellations of the Platonic solids was given a big push by H. S. M. Coxeter and others in 1938, with the now famous paper The 59 icosahedra. This work has recently been re-published (Coxeter, 1999).

The reciprocal process to stellation is called facetting (or faceting). Every stellation of one polytope is dual, or reciprocal, to some facetting of the dual polytope. The regular star polyhedra can also be obtained by facetting the Platonic solids.

See also:

Unless indicated otherwise, the text in this article is either based on Wikipedia article "Polyhedron" or another language Wikipedia page thereof used under the terms of the GNU Free Documentation License; or on original research by Jahsonic and friends. See Art and Popular Culture's copyright notice.

Personal tools